7.4.3 Parametrické vyjádření roviny

Můžeme tedy psát: \(X = A + tu + sv \), \(t, s \in R \)

Př. 1: Rozepiš parametrické vyjádření roviny dané bodem \(A[a_1;a_2;a_3] \) a vektory \(u = (u_1;u_2;u_3), \ v = (v_1;v_2;v_3) \) do rovnic pro jednotlivé souřadnice bodů \(X[x;y;z] \).

\[
x = a_1 + tu_1 + sv_1 \\
y = a_2 + tu_2 + sv_2, \ t, s \in R \\
z = a_3 + tu_3 + sv_3
\]

Př. 2: Najdi parametrické vyjádření roviny \(ABC \quad A[1;2;3], \ B[3;0;2], \ C[-1;2;-2] \).

Výpočtem zjisti, zda v rovině leží body \(D[3;2;1] \) a \(E[-3;4;-1] \).

Určíme dva směrové vektory: \(u = B - A = (2;-2;-1) \) \(\quad v = C - A = (-2;0;-5) \)

Parametrické vyjádření roviny: \(y = 2 - 2t \) \(\quad z = 3 - 2t - 2s \), \(t \in R, s \in R \)

Pokud \(\text{bod } D : 2 = 2 - 2t \)

\[1 = 3 - t - 5s\]

Z druhé rovnice vypočítáme \(t : 2 = 2 - 2t \Rightarrow t = 0 \). Dosadíme do zbývajících rovnic:

\[
3 = 1 + 2t - 2s \Rightarrow t = 0 \\
= 2 - 2t - 2s \Rightarrow s = -1 \\
= 2 \Rightarrow \text{bod } D \quad \text{v rovině } ABC \quad \text{neleží.}
\]

Pokud \(\text{bod } E : 2 = 2 - 2t \)

\[-1 = 3 - t - 5s\]

Z druhé rovnice vypočítáme \(t : 4 = 2 - 2t \Rightarrow t = -1 \). Dosadíme do zbývajících:

\[
-3 = 1 + 2t - 2s \Rightarrow s = 1 \\
-1 = 3 - t - 5s \Rightarrow s = 1 \\
\Rightarrow \text{bod } E \quad \text{v rovině } ABC \quad \text{leží.}
\]

Př. 3: Jsou dány body \(B[3;0;2], \ C[-1;2;-2], \ E[-3;4;-1] \) z předchozího příkladu

(všechy leží v rovině \(ABC \)). Najdi parametrické vyjádření přímky \(BC \). Poté vyjádři rovinu \(ABC \) pomocí vyjádření přímky \(BC \) a bodu \(E \) (rovinu je možné zadat i přímou a bodem). Srovnajte výsledky tohoto příkladu s parametrickým vyjádřením roviny \(ABC \) z předchozího příkladu.

Přímka \(BC \):
Směrový vektor: \(\mathbf{u} = C - B = (-4; 2; -4) \). Přímka \(BC \): \(X = B + t\mathbf{u} = [3; 0; 2] + t(-4; 2; -4) \).

Rovina ABC: použijeme bod \(E \): \(v = E - B = (-6; 4; -3) \)
\[
x = 3 - 4t - 6s
\]
Vyjádření roviny:
\[
y = 2t + 4s
\]
\[
z = 2 - 4t - 3s, t \in R, s \in R
\]

Př. 4: Najdi průsečník roviny \(ABC = \{[1+2t-2s;2-2t;3-t-5s], t \in R, s \in R\} \) se souřadnou rovinou \(xz \).

Rovnice souřadné roviny \(xz \): \(y = 0 \).
Dosadíme z poslední rovnice do druhé: \(0 = 2 - 2t \Rightarrow t = 1 \).
Získanou hodnotu dosadíme do zbývajících rovnic:
\[
x = 1 + 2 \cdot 1 - 2s = 3 - 2s
\]
\[
z = 3 - 1 - 5s = 2 - 5s
\]
Soustavě rovnic vyhovuje nekonečně mnoho bodů, které vyhovují sadě rovnic:
\[
x = 3 - 2s
\]
\[
y = 0 \Rightarrow \text{získali jsme parametrické vyjádření přímky (logické, očekávali jsme to).}
\]
\[
z = 2 - 5s, s \in R
\]

Průseční rovin \(ABC \) a \(xz \) je přímka \(p = \{[3 - 2s; 0; 2 - 5s], s \in R\} \).

Př. 5: Najdi průsečík roviny \(ABC = \{[1+2t-2s;2-2t;3-t-5s], t \in R, s \in R\} \) s přímkou \(p = \{[-1+2t;-4+t;-2-t], t \in R\} \).

POZOR: vyjádření přímky \(p \) obsahuje stejně pojmenovaný parametr jako vyjádření roviny \(\Rightarrow \) jedno z písmen musíme změnit.
\[
1 + 2t - 2s = -1 + 2t
\]

Soustava rovnic:
\[
2 - 2t = -4 + r
\]
\[
3 - t - 5s = -2 - r
\]

Z druhé rovnice vyjádříme \(r \) a dosadíme do ostatních: \(r = 6 - 2t \).
\[
1 + 2t - 2s = -1 + 2(6 - 2t)
\]
\[
1 + 2t - 2s = -1 + 12 - 4t
\]
\[
3 - t - 5s = -2 - (6 - 2t)
\]
\[
3 - t - 5s = -2 - 6 + 2t
\]
\[
3t - s = 5
\]
\[
3t + 5s = 11
\]

\[
t: \ 3t - s = 3t - 1 = 5 \Rightarrow t = 2.
\]
\[
r: \ r = 6 - 2t = 6 - 2 \cdot 2 = 2.
\]
\[
x = -1 + 2r = -1 + 2 \cdot 2 = 3
\]
\[
y = -4 + r = -4 + 2 = -2
\]
\[
z = -2 - r = -2 - 2 = -4 \Rightarrow P[3;-2;-4].
\]

Př. 6: Petáková:
strana 115/cvičení 16 a) d)
strana 115/cvičení 17 a)